PROCESS ENGINEERING SERVICES Plant visit & study of existing systems of 35TPH boiler **Client: ITC Limited - Paperboards & Specialty Papers Division (TRIBENI UNIT)** **Project: ITC TRIBENI** Scope Of Work: Repowering options for the existing 35 TPH Ignifluid boiler for the following: 1) Discussions about the shortfall in boiler capacity, evaluation of the possible issues and recommendations 2) Discussion on various fuels to be fired in combination for the current balls. ## PROCESS ENGINEERING SERVICES Plant visit & study of existing systems of 35TPH boiler **Client: ITC Limited - Paperboards & Specialty Papers Division (TRIBENI UNIT)** **Project: ITC TRIBENI** | SI. No. | Scope considered | Option 1 - As it is
revemping | Option 2 - Converting to
35 TPH FBC Boiler | Option 3 - Converting to
45 TPH FBC Boiler | Option 4 - New 45 TPH
FBC Boiler in Existing
Steel Structures | |---------|-------------------------------------|--|---|--|---| | - 1 | Builer parameters | 35 TPH / 24 kseg / 340 C | 35 TPH / 24 bacg / 340 C | 45 TPH / 35 harg / 425 C | AS TEST / 68 hors / 480 C | | 2 | Mapping and STAAD Fro Analysis | MUST | MUST | MUST | MOUST | | (3 | Background / Priority consideration | Safe Experation with minimum automation Lass investment Lower foodstring Efficient operation | Sofe operation with economical automation
task involunters
Lower downstone
Efficient operation | Sefe and efficient operation
Quicker payback period
Relatively a lower investment
Historively a lower downtime | Brand new boiler without aer
hauses
five lingering on old boiler
components
State of the art technology | | | Position Paints | Leaser investment among all options considered | Relatively a still leasur
investment among all options
constituted | timis tracernes a cogen instead of process botter and results in a few process botter and results in a few process of the p | Excess capacity on be used for
additional power generation
whenever there is a plant
expension | | | | Lower dewetten among all options considered | Relatively a lower downline among all options considered | Additional power generated results in higher revenue to the company and also dependency on SEB grid is reduced. | | | | | | Boller would be safe with all
section required automation
and thermal efficiency is high | Boiler would be safe with all
essential required automation
and thermal efficiency is high | Boffer would be safe with all
extentiol required automation
and thermal efficiency is high | | | | | There are plenty of BFB bollers
operating in India and There is
no dearth of operating
experience with a BFB boller
unlike the IBM boller. | There are plenty of BFB boilers
aperating in india and there is
no dearth of operating
experience with a BFB boiler
ordine the ISB builer. | There are pionty of BFB boilers
operating in India and there is
no dearth of operating
separations with a BFB boiler
unified the IBH boiler | | | | | Very less maintenance except
for in-bed tubes regularization
which once taken care of will
result in almost nil forced
outages | Very less maintenance except
for in lead subset replacement
which series taken care of will
result in atmost nil forced
outages | Very less maintenance except
for in hed tubes replesement
which occe taken care of will
result in almost nil forced
outages | | | | | ITC operating team is highly experienced and confortable operating a similar design Enmas AFBC boder. No pessibility of clashing of methodologies in operating the boiler | ITC operating team is highly experienced and comfortable operating a similar design Emmas AFBC boder. No possibility of clashing of methodologies in operating the boder. | ITC operating team is highly
experienced and comfortable
operating a similar design Ener
AFIIC boiler. No possibility of
clashing of methodologies in
operating the boiler | | | | | More fuel flexibility compared to | force fuel flexibility compared to
IRU boiler
Lowest payback period among | More fuel flexibility compared in the botter | | | | | | all the options | | | | Programme Posters | Boller capacity can be 30-35 TPH only | Buller capacity can be 30-35 TPH only | | No immediate returns except
the assurance of no less of
graduation | | | <u> </u> | Butter would be safe with minimal required automation | New components added,
resulting in additional chili works
and 65C time. | New components added,
resulting in additional civil works
and E&C time. | New components added,
resulting in additional civil war i
and E&C lime. | | | 1 | The technology is almost obsolets and no OEM support is available for resolving issues. | investment cost is more than
that of Option 1. | Investment cost is more than
that of Option 1 & Option 2 | lovestment cost is more than
that of all other Options | | | | Maintenance prone with a
moving grate in the high
temperature zone | Downtime is more than that of Option 1. | Directions is more than that of Option 1. | Downtime is more than that at
all other Options | | | | Operation team may experience
clash of procedures between the
thick and formes between | | | |